

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 82-85 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02108285 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 82

Readers and Writers Problem Revisited

Nithyasrikannathal, Dr.M. Sujithra M.C.A, M.Phil., PhD, Dr.A.D.

Chitra M.C.A, M.Phil., PhD,
2nd Year, M.Sc. Software Systems (Integrated), Coimbatore Institute of Technology, Coimbatore

Assistant Professor, Department of Data Science, Coimbatore Institute of Technology, Coimbatore

Assistant Professor, Department of Software Systems, Coimbatore Institute ofTechnology, Coimbatore

Date of Submission: 20-11-2020 Date of Acceptance: 03-12-2020

--

ABSTRACT:The reader writer issue is one of the

very notable issues in simultaneous hypothesis. It

was first presented by Courtois et.al. in 1971 and

requires the synchronization of cycles attempting to

peruse and compose a common asset. A few reader

writers are permitted to get to the asset all the

while, however an essayist must be given elite

admittance to that asset. Courtois et.al. gave

semaphore-based answers for what they called the

first and second reader writer scholars' issues. Both

of their answers are inclined to starvation. The first

permits reader writer to inconclusively bolt out

essayists and the second permits authors to

uncertainly bolt out reader writer This paper

presents and demonstrates right a third semaphore-

based arrangement, which is without starvation for

both reader writer and essayist measures.

KEYWORDS: concurrency control, shared

objects, mutualexclusion, formal verification,

computing education.

I. INTRODUCTION
The readers-writers issue requires the

synchronization of concurrent forms simul-

timeously getting to a shared asset, such as a

database protest. This issue is diverse from the

known common avoidance issue in that it

recognizes between two categories of forms: those

who as it were perused the asset, called reader

writer, and those who compose it, called scholars.

Since reader writer forms as it were studied the

asset, it is more effective to allow all such reader

writer forms synchronous get to to the re-source.

Be that as it may, a author handle is allowed elite

get to to the asset. In this way, it isn't satisfactory to

secure the asset utilizing the conventional basic

segment method of shared prohibition, permitting

at most one handle to ac-cess the asset at a time.

The readers-writers necessities permit

moreconcurrency and more efficient use of the

resource.

wait

f

If S

then

 wait on S

 the process

else S

g

signal f

is not empty then if S

remove one process from S and unblock it

else S

These operations are atomic, which

requires them to show up as if they are completed

in a critical section. When a technique is executing

wait(S) or signal(S), no different procedure can

execute both of these two operations on the equal

semaphore S.

Most current work on the readers-writers

problem addresses building analytical models

andstudying overall performance implications. That

work, how-ever, does not suggest options to the

problem. The group mutual exclusion hassle pro-

posed by using Jong is a generalization of the

readers-writers problem.

READER PROCESS

wait (mutex);

rc ++;

if (rc == 1)

wait (wrt);

signal(mutex);

Read the object

wait(mutex);

rc --;

if (rc == 0)

signal (wrt);

signal(mutex);

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 82-85 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02108285 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 83

Writer Process

wait(wrt);

WRITE INTO THE OBJECT

signal(wrt);

exclusion implies a answer to the readers-

writers problem. Joung‟s solution uses only

read/write primitives of shared memory. Its pro-

duces excessive processor-to-memory traffic,

making it much less scalable. Keane and Moir

grant a greater efficient solution to team mutual

exclusion than Joung‟s. Their solution depends on

the pre-existence of a truthful “classical” mutual

exclusion algorithm to implement their gather and

release operations. The algorithm additionally

makes use of explicit neighborhood spinning or

busy waiting to pressure processes to wait. Finally,

the solution relies upon on the usage of an express

queue for waiting processes.

The answer in this paper is simpler, in the

main due to the fact it solves a unique case

(readers-writers) of the more frequent problem

(group mutual exclusion). We do no longer make

use of express spinning. Given that semaphore

operations can be effectively constructed into an

working system using blockading instead of

spinning, spinning can be altogether averted in our

solution. In this paper, we do now not address the

complexity of our algorithm, but it is apparent that

it generally relies upon on the implementation of

thesemaphore and the underlying memory

architecture(such as cache coherent or non-uniform

memory access).

PREVIOUS SOLUTIONS

Given a crew of procedures portioned into

readers and writers, a answer to the readers-writers

problem ought to satisfy the following two

properties:

Safety: if there are more than two

approaches the use of the resource at the equal

time, then all of these methods have to be readers.

Progress: if there is more than one method

trying to get admission to the resource, then at least

one system succeeds.

The first, second, and our third problem

require different fairness properties. Courtois et.al.

state:

For the first trouble it is possible that a

author could wait indefinitely whilst a circulate of

readers arrived.”

Hence, the first problem requires:

Fairness-1: if some reader procedure is

trying to get right of entry to the resource,then this

procedure finally succeeds. This property needless

to say favours readers and in the first problem there

is no guarantee that a writer manner does not

starve. Similarly, the second problem favours

writers. Courtois et.al. require: “In [the second]

problem we provide precedence to writers and

enable readers to wait indefinitely whilst a move of

writers is working.”

Hence, the fairness requirement of the 2d

problem is as follows:

Fairness-2: if some creator technique is

attempting to get admission to the resource, then

this procedure finally succeeds., if the first reader

progresses to study the resource, it will block any

manageable writers until it is done. However, if a

stream of readers keeps on arriving, they can also

all omit the if announcement in the entry section.

Therefore, it is feasible that every such reader in no

way waits for aid and writers can be locked out in-

definitely. A comparable argument applies to the

answer in but right here writers can lock out

readers

FINAL SOLUTIONS
Elsewhere, in connection with a one of a

kind synchronization problem, we have described

how P and V operations on semaphores can be

efficaciously applied as two-part operations: an

indivisible hardware or microcode coaching (which

decrements or increments a semaphore variable and

units a condition code showing the end result of the

operation) and an indivisible operation to suspend

or set off a system (which is usually a software

program routine implemented as part of the method

scheduler).' These operations are combined as to

structure macro guidelines which enforce the P and

V operations. Notice that the suspend/activate

operations must be commutative in the experience

that each prompt wakes up exactly one process and

that the sequence (suspend; activate) has the same

nett effect. Our fundamental answer for the

readers/writer‟s hassle can be regarded as an

extension of this technique. We recommend that

indivisible hardware/micro coded guidelines are

furnished to establish a claim for reading, read-p,

and for writing, write-p, and to release from

reading, reed-v, and from writing, write-v. In

addition, we extend the indivisible „activate‟ and

‟suspend‟ primitives to support this case. In the

following subsections we shall describe the

proposed new primitives in detail, showing that

they can be efficiently implemented. We shall then

attempt tojustify why this appears preferable to

previous approaches.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 82-85 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02108285 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 84

THE MICRO CODED INSTRUCTION

The shape of a „readers/writers

semaphore‟, a type of variable on which reed-p,

read-v, write-p. and write-u instructions operate.

The Boolean field current-writer suggests

whether any creator is in its writing region; the

ultimate integer fields remember the number of

tactics ready to read,currently reading and/or ready

to write. The initial values of these fields are false

and zero, as appropriate.

The indivisible hardware or micro coded

operations on these variables are outlined in a

Pascal-like notation in Fig. S. Each process units a

local condition code indicating whether a

subsequent call must be made on the queuing

processes (if true) or now not (if false) in order to

complete the required protocol.

It is the micro coded operations which

determine when strategies ought to be suspended

and activated, and in outcome they determine the

precedence rules.It actually describes the author

precedence situation, but it is without problems

modified tore8ect reader priority: read-u and write-

p continue to be unchanged; in reed-p the

conditional expression is decreased to if no longer

current-writer then ...; the order of the checks in

trim-v is changed so that ready readers are given

precedence over waiting writers

ASSUMPTIONS

For the correctness of our algorithm, we assume the

following:

The execution is sequentially consistent.

Lamport requires for sequential consistency: “the

result of any execution is the same as if the

operations of all the processors were executed in

some sequential order, and the operations of each

individual processor appear in this sequence in the

order specified by its program.The execution either

eventually terminates (the executing processes

terminate and no new processes are admitted to the

system) or, if it is infinite and there is at least one

participating writer process, the execution

continues indefinitely to have participating writer

processes. That is, the Progress property re-quires

that in an infinite execution with some participating

writers, the execution does not come to a point

where, from that point on, all the processes are

indefinitely readers.

FORMAL VERFICATION

Implementation of the wait and signal

operations in Promela, SPIN‟s programming

language are given in Figure 5. Since Promela

lacks constructs for blocking an active process, we

must use busy waiting to delay the process. We

choose to implement the wait and signal operations

using Peterson‟s n-process mutual exclusion

algorithm [8], reproduced in Figure

 That is, the wait operation is the code to

enter a critical section and the signal is the exit

code. The fairness of Peterson‟s algorithm

(amaximum fairness delay of (n2; n) =2) impliesa

fair semaphore implementation.

IMPLEMENTATION:

#include<semaphore.h>

#include<pthread.h>

#include<stdio.h>

int rc=0,wc=0,val;

pthread_mutex_t mutex1,mwrite,mread,rallow;

pthread_t tr1,tr2,tw1,tw2;

pthread_attr_t tr1attr,tr2attr,tw1attr,tw2attr;

void *writer();

void *reader();

int main()

{

pthread_mutex_init(&mwrite,NULL);

pthread_mutex_init(&mread,NULL);

pthread_mutex_init(&rallow,NULL);

pthread_mutex_init(&mutex1,NULL);

pthread_attr_init(&tw1attr);

pthread_attr_init(&tr1attr);

pthread_attr_init(&tr2attr);

pthread_attr_init(&tw2attr);

printf("\n Writer 1 created: ");

pthread_create(&tw1,&tw1attr,writer,NULL);

printf("\n Reader 1 created: ");

pthread_create(&tr1,&tr1attr,reader,NULL);

printf("\n Reader 2 created: ");

pthread_create(&tr2,&tr2attr,reader,NULL);

printf("\n WRITER 2 created: ");

pthread_create(&tw2,&tw2attr,writer,NULL);

pthread_join(tw1,NULL);

pthread_join(tr1,NULL);

pthread_join(tr2,NULL);

pthread_join(tw2,NULL);return 0;

}

void *writer()

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 82-85 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02108285 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 85

{

pthread_mutex_lock(&mwrite);

wc++;

if(wc==1)

pthread_mutex_lock(&rallow);

pthread_mutex_unlock(&mwrite);

pthread_mutex_lock(&mutex1);

printf("\n Enter data in writer %d: ",wc);

scanf("%d",&val);

pthread_mutex_unlock(&mutex1);

pthread_mutex_lock(&mwrite);wc--;

if(wc==0)

pthread_mutex_unlock(&rallow);

pthread_mutex_unlock(&mwrite);

pthread_exit(0);

}

void *reader()

{

pthread_mutex_lock(&rallow);

pthread_mutex_lock(&mread);

rc++;

if(rc==1)

pthread_mutex_lock(&mutex1);

pthread_mutex_unlock(&mread);

pthread_mutex_unlock(&rallow);

printf("\n reader %d read data: %d",rc,val);

pthread_mutex_lock(&mread);

rc--;

 if(rc==0)

pthread_mutex_unlock(&mutex1);

pthread_mutex_unlock(&mread);

pthread_exit(0);

}

OUTPUT:

II. CONCLUSION
This paper introduced a new semaphore-

based solution to the readers-writers concurrency

problem. Previous specialized solutions either (a)

did not permit more than one reader to

simultaneously access the resource, (b) permitted

readers to indefinitely lock out writers, (c) or per-

mitted writers to indefinitely lock out readers. None

of these solutions is practically appealing and our

solution answers all of their limitations. There are,

however, recent solutions to a more general

problem, the group mutual exclusion problem. Our

solution is a simpler solution to a simpler problem

REFERENCES
[1]. Bernard van Gastel, Leonard Lensink,

SjaakSmetsers and Marko van Eekelen,

[2]. “Reentrant Readers-Writers”– a Case Study

Combining Model Checking with Theorem

Proving. ICIS Technical Report R08005

[3]. Michel Raynal. “Simple distributed solutions

to the readers-writers problem.” [Research

Report] RR-1279, INRIA. 1990. inria-

00075280

[4]. J. L. Keedy and J. Rosenberg, K.

Ramamohanarao,”On Synchronizing

Readers and Writers with Semaphores”

[5]. Jalal Kawash,”Process Synchronization with

Readers and Writers Revisited”Journal of

Computing and Information Technology -

CIT 13, 2005, 1, 43–51

[6]. writer‟s problem versus the group mutual

exclusion problem). It also has an

educational value if the widely quoted unfair

solutions in famous operating systems text

books are supplemented with it

